・实验研究・

双眼形觉剥夺对成年大鼠视皮层兴奋性突触后电流的影响

余 涛 阴正勤 翁传煌

Effects of binocular form deprivation on neuron excitory postsynaptic currents in adult visual cortex

Yu Tao, Yin Zhengqin, Weng Chuanhuang. Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China

Abstract Objective Our previous study demonstrated that binocular form deprivation (FD) in critical period visual cortex of rats can inhibit the development of N-mehyl-D-aspartate (NMDA) receptor and prolong the plasticity stage. Present study was to investigate the excitory synaptic transmission of layer [I] - [I] neurons from visual cortex of adult rats manipulated by binocular FD. **Methods** The visual cortex slices were prepared from Long-Evans rats aged from postnatal weeks (9-week-old rats and 7-week-old rats) after 14-day binocular FD. Patch-clamp whole cell recording techniques were adopted to observe the postsynaptic current. Presynaptic stimulation was given at 0.5 mA through bipolar stimulating electrodes placed in layer [V]. Postsynaptic currents of layer [I] - [I] neurons were recorded with recording electrodes. Excitory postsynaptic currents (EPSCs) were isolated by holding the membrane potential at -60 mV, which was close to the reversal potential for inhibitory postsynaptic current isolations were confirmed by pharmacological method. **Results** Input resistance, resting membrane potential and the peak value of postsynaptic currents (PSCs) were unchanged in adult visual cortex treated with binocular FD in comparison with 9-week-old rats (P = 0.336, 0.976, 0.983). No significant differences were found in peak value and 10% -90% decay time of EPSCs and NMDA-EPSCs as well as the NMDA-EPSCs/EPSCs ratio between 9-week-old rats and binocular FD rats (P = 0.951, 0.773, 0.827, 0.901). **Conclusion** This study indicates that binocular FD has no effect on excitory synaptic transmission in the adult visual cortex.

Key words visual cortex; form deprivation; NMDA receptor; postsynaptic currents; whole cell recording

摘要 目的 探讨双眼形觉剥夺(FD)对成年大鼠视皮层神经元兴奋性突触传递特性的影响。方法 采用视皮层脑片膜片钳全细胞记录和电流分离技术,分别记录9周龄正常大鼠和7周龄大鼠双眼FD后14d的视皮层神经元膜学特性、突触后电流(PSCs)与NMDA兴奋性突触后电流(EPSCs)。 结果 双眼FD不改变成年大鼠视皮层神经元的膜学特性和PSCs电学指标。双眼FD对成年大鼠视皮层神经元 EPSCs、NMDA-EPSCs的峰值以及 NMDA-EPSCs在总 EPSCs中所占比例,NMDA-EPSCs的复极化时间无明显影响。 结论 双眼FD不影响成年大鼠视皮层神经元兴奋性神经传递功能。

关键词 视皮层;形觉剥夺; NMDA 受体; 突触后电流; 全细胞记录 分类号 R 778.1 文献标识码 A 文章编号 1003-0808(2009)04-0261-04

对幼年动物视皮层可塑性关键期启动和终止机制的研究证实,视皮层可塑性依赖于皮层内神经元抑制

和兴奋性神经通路的平衡所介导的突触可塑性^[1]。 通过脑片膜片钳全细胞记录技术研究视皮层突触后电 流(postsynaptic currents,PSCs)是探索突触可塑性变化 最直接的方法。本研究多年来应用此技术结合神经药 理学方法和电流分离技术证实:在大鼠视皮层可塑性 关键期内行双眼形觉剥夺(form deprivation,FD)可以

本课题为国家自然科学基金(30801278、30672280)、国家 863 计划 项目(2007AA04Z324)资助

作者单位:400038 重庆,第三军医大学西南眼科医院 通讯作者:阴正勤(Email: zqyin@mail.tmmu.com.cn)

抑制 N-甲基-D-天冬氨酸(N-mehyl-D-aspartate, NMDA)受体电流特性的发育变化,从而延长可塑性关 键期^[2-3]。那么双眼 FD 是否可以引起成年大鼠视皮 层神经元兴奋性突触后电流(excitory postsynaptic currents, EPSCs)的相应改变,目前尚未见相关报道。 本研究采用脑片膜片钳全细胞记录和受体电流分离 技术,探索成年大鼠双眼 FD 后,其视皮层神经回路 中 EPSCs 的变化情况,进一步了解 NMDA 受体介导 的电流成分在成年视皮层可塑性再激活机制中的 作用。

1 材料与方法

1.1 实验材料

1.1.1 实验动物 健康 Long-Evans 大鼠 30 只(第三 军医大学大坪野战外科研究所实验动物中心提供), 雌雄不限,出生后 7 周龄大鼠 15 只,9 周龄大鼠 15 只。

1.1.2 实验试剂 (1) 人 工 脑 脊 液 (artificial cerebrospinal fluid, ACSF): CaCl, 2.4 mmol/L, NaCl 124 mmol/L, KCl 3 mmol/L, NaH₂ PO₄ 1.25 mmol/L, MgSO₄1.3 mmol/L, NaHCO, 26 mmol/L。(2) 成年动物 脑片切片液: choline chloride 110 mmol/L, CaCl₂ 0.5 mmol/L, KCl 2.5 mmol/L, NaH, PO, 1.25 mmol/L, NaH, PO, 10 mmol/L, NaHCO, 26 mmol/L, 葡萄糖 10 mmol/L_o(3) 成年动物脑片孵育液:50%的新鲜 ACSF 加入 50% 成年动物脑片切片液配制。(4)电极 内液:葡萄糖酸钾 232.4 mmol/L, MgCl, 2 mmol/L, HEPES 5 mmol/L, EGTA 0.5 mmol/L, ATP 2 mmol/L $_{\circ}$ (5)各种离子通道阻断剂(美国 Sigma 公司):选择性 γ-氨基丁酸(gamma-aminobutyric acid, GABA,)受体阻 断剂荷包牡丹碱(bicuculline methiodide, BMI) 10 mmol/L, 选择性 α-氨基-3-羟基-5-甲基-4-异唑丙酸 (α -amino-3-hydroxy-5-methyl-4-isox-azolepropionic acid, AMPA) 受体阻断剂 6-氰基-7-硝基喹啉-2,3-三酮(6cyano-7-nitroquinoxaline-2, 3-dione, CNQX) 10 mmol/L, 选择性 NMDA 受体阻断剂 L-2-氨基-5-磷酸基戊酸 (D, L-2-amino-5-phosphonovalerate, AP5) 50 mmol/ L_{\circ}

1.2 制备模型

1.2.1 双眼 FD 模型制作 7 周龄大鼠 15 只行双眼上下眼睑缝合,在正常光线条件下饲养 14 d 后行膜片钳实验。

1.2.2 视皮层脑片制备 20% 乌拉坦麻醉大鼠,用
0℃氧饱和的脑片切片液经左心室快速灌注,然后快速断头,打开颅骨,取出完整大脑,切下一侧大脑半球

的枕叶,中间切面用 502 胶水固定到 ZQP-86 型振动切 片机(上海之信仪器有限公司)的平台上,浸入0 ℃氧 饱和的脑片切片液内。根据定位图谱,将脑块含有 17 区的部分在冠状平面上切成厚度为 300~400 μ m 的脑 片,并立即移入持续通以 95% O₂和 5% CO₂成年动物 脑片孵育液中,室温下(18~25 ℃)孵育 1 h 后进行 实验。

1.3 视皮层脑片膜片钳电生理记录

1.3.1 脑片膜片钳全细胞记录方法 取1片视皮层脑片,放入浴槽中,用室温下氧饱和的成年动物脑片孵育液 3~4 mL/min 灌流。拉制好的玻璃微电极 (tw150F-4G型,美国 WPI 公司)(人液阻抗为8~ 10 MΩ)内灌入适量电极内液,作为记录电极。记录电极用微操纵器(MLN-2,MHW-3,日本 Taiyo 公司)插入 II~II层中,形成高阻封接前给予电极内持续正压,防止电极尖端阻塞。当电极接触细胞时,撤出正压立即给予负压,此时通过膜片钳放大器(Axopatch 200B,美国 Axon 公司)输出,在显示屏上的测示方波可见阻抗快速升高,并达 GΩ,形成高阻封接后,进行快速电容补偿,测示方波基本变成一条直线,此时电极内给予短 促较大负压,吸破细胞膜,通过测示方波判断是否形成 全细胞记录。

1.3.2 记录视皮层内神经元被动膜学特性 形成全 细胞记录后,在电压钳模式下,通过 pClamp 8.0 软件 (Axon Instruments, USA)中的 Clampex 采集数据,通过 membrane test 窗口测量细胞的输入阻抗(input resistance, IR, M Ω),然后将记录模式从电压钳转换到 电流钳(I=0),测量细胞的静息膜电位(resting membrane potential, RMP, mV)。

1.3.3 记录 PSCs 双极钨丝刺激电极插入到Ⅳ层, 距离记录电极≤500 μm。在电压钳模式下,将膜电位 钳制在 -70 mV,记录神经元全细胞膜电流,然后通过 电子刺激器(SEN-7203,日本 Nihon Kohden 公司)发出 单脉冲电流刺激,刺激强度为0.5 mA,波宽为0.1 ms, 频率为0.07 Hz,记录 PSCs。

1.3.4 视皮层 EPSCs 反转电位的验证 当电压钳制 在某一水平时,所得到的 PSCs 净电流为 0,这时所在 的电压称为反转电压,它代表了介导此电流离子通道 的等位电压。我们在 -70 mV 诱发出 PSCs 后,灌流液 内加入 BMI,就可以得到 EPSCs,然后将钳制电压从 -70 mV逐渐递增改变至 0 mV,发现 EPSCs 电流在 0 mV时变成直线,灌洗冲出阻断剂后,最初所得 PSCs 可以恢复。证实了 EPSCs 的反转电位在 0 mV(图 1)。

图 1 EPSCs反转电压的验证

Fig. 1 Confirmation of reversal potential for EPSCs

1.3.5 视皮层 NMDA-EPSCs 电流的分离和药理学方法验证 本研究将反转电位的原理用于受体电流的分离,即在 - 70 mV 时刺激得到 PSCs,将电压钳制到 - 60 mV,再加入 CNQX,就可以得到 NMDA-EPSCs (图 2)。

1.3.6 资料纳入标准 反应稳定,将膜电位钳制在固 定电压时所需的电流值无明显变化,记录初始时串联 电阻 <30 MΩ,记录过程中波动 ≤20%;输入阻抗和串 联电阻无明显变化的单突触反应细胞纳入统计。无反 应和多突触反应细胞、记录初始串联阻抗 >30 MΩ、记 录过程中峰电流持续衰减和记录结束电极自细胞内旋 出后直流补偿 >5 mV 的细胞不纳入统计。

1.4 统计学方法

应用 Clampfit 9.0(Axon Instruments, USA)进行数据 分析处理,每个细胞的 PSC 由4条 sweep 平均而成。采 用 SPSS 13.0统计学软件对 数据进行统计学处理,计量 数据以 \bar{x} ±s 表示。9 周龄大 鼠与双眼 FD 大鼠间各指标 的比较采用独立样本的 t 检 验。P < 0.05 为差异有统计学意义。

2 结果

2.1 双眼 FD 对成年大鼠神经元膜学特性及 PSCs 电学指标的影响

在-70 mV 电压钳制水平上,30 只大鼠视皮层脑 片内记录到大鼠视皮层神经元 11 个单突触型 PSCs。 对9 周龄大鼠和双眼 FD 大鼠所记录细胞的 IR 和 RMP 及 PSCs 的电学指标的比较见表 1。双眼 FD 组 与9 周龄组比较,IR、RMP 和 PSCs 峰值的变化差异均 无统计学意义,提示双眼 FD 不改变成年大鼠视皮层 神经元的膜学特性和 PSCs 电学指标。

表 1 各组大鼠视皮层神经元膜学特性及 PSCs 电学指标比较(x ± s)

Table 1 Comparison of neurons membrane properties and PSCs electronic index in visual cortex of different groups $(\bar{x} \pm s)$

Group	n	IR(M _Ω)	RMP(mV)	Peak value(pA)
9-week rats	5	227. 36 ± 32. 94	-70.14 ± 3.42	1 330. 70 ± 498. 47
Biocular FD	6	237. 20 ± 22. 56	-70.67 ± 4.78	1 324. 45 ± 313. 67
t		-1.017	0.032	0.022
Р		0. 336	0. 976	0.983

n:numbers of PSCs(Student's t test)

2.2 双眼 FD 对成年大鼠视皮层神经元 EPSCs、 NMDA-EPSCs 及 NMDA-EPSCs/EPSCs 比值的影响

在-60 mV 电压钳制水平上,对9 周龄和双眼 FD 组的11 个 PSCs 进行 EPSCs 和 NMDA-EPSCs 分离,得 到 EPSCs 和 NMDA-EPSCs 各 5 个。不同组大鼠视皮 层神经元 EPSCs 和 NMDA-EPSCs 各项电学指标比较 见表 2。双眼 FD 组与9 周龄组比较, EPSCs 峰值、 NMDA-EPSCs 峰值、NMDA-EPSCs 在总 EPSCs 中所占 比例以及 NMDA-EPSCs10% ~90%复极化时间差异均 无统计学意义,提示双眼 FD 不影响成年大鼠视皮层 神经元总的 EPSCs 强度、NMDA-EPSCs 强度、NMDA-EPSCs 在总 EPSCs 中所占比例以及 NMDA 兴奋性突 触传递通路的时程。

表 2 各组大鼠视皮层神经元 EPSCs 和 NMDA-EPSCs 电学指标比较 $(\bar{x} \pm s)$

Table 2	Electronic index of EPSCs and NMDA-EPSCs in visual cortex of different groups $(\bar{x} \pm s)$								
Group	n	EPSCs peak value(pA)	NMDA-EPSCs peak value(pA)	NMDA- EPSCs/EPSCs	NMDA-EPSCs decay time(ms)	NMDA-EPSCs rise time(ms)			
9-week rats	5	1 530. 93 ± 116. 07	685.63 ± 67.69	0.45 ± 0.13	16. 76 ± 4. 54	2.46 ± 1.19			
Biocular FD	5	1 535. 10 ± 209. 99	670. 45 ± 133. 47	0.44 ± 0.18	17.45 ± 7.42	2.10 ± 1.08			
t		- 0. 064	0. 298	0. 128	- 0. 226	0.633			
Р		0. 951	0.773	0. 901	0.827	0. 544			

n:numbers of EPSCs or NMDA-EPSCs(Student's t test)

3 讨论

哺乳动物出生后,视觉系统能够根据视觉环境及 时调整和改变自身的神经联系和突触结构,这种变化 能力称为视觉发育可塑性,而这一改变发生的最敏感 时期,称为视觉发育可塑性关键期^[4]。视皮层神经元 突触可塑性是视觉发育可塑性关键期的重要特征。有 证据表明 NMDA 受体在视皮层神经元突触可塑性中 十分重要,其受体亚型的数量、类型和分子成分的改变 能够相应的改变突触传递的特性^[5-6]。NR2A 和 NR2B 是 NMDA 受体中最重要的两种亚型^[7-9],它们 的表达随发育和视觉经验而变化^[10]。本研究前期的 研究发现,大鼠视皮层神经元 NMDA-EPSCs 峰值随发 育逐渐增加但在可塑性高峰期之后不再增大,并且其 在总 EPSCs 中所占比例也是下降的^[11]。

黑暗环境饲养的幼年期动物,其视皮层神经元 NMDA-EPSCs 的复极化时间延长,表明 NR2A/2B 亚型 成分的改变介导了 PSCs 的变化^[12]。本研究前期的实 验也证实,双眼 FD 后的幼年大鼠,其 NMDA-EPSCs 的 复极化时间不随发育而变短,并且 NMDA-EPSCs 在总 EPSCs 中所占比例也不随发育变小,说明双眼 FD 对 幼年大鼠视皮层兴奋性神经传递通路有影响^[2]。那 么双眼 FD 后的成年大鼠视皮层,其兴奋性神经传递 功能又会有什么变化,目前尚未见报道。

Yashiro 等^[13] 对黑暗环境饲养 10 d 后的正常成年 小鼠研究发现,高频刺激诱导了 NMDA 受体电流强度 的增强,使用 NR2B 受体特异性阻断剂后, NMDA 受体 电流强度不再增加。在各项电学指标中, IR 和 RMP 反映所记录神经元的电学成熟度,PSCs 的峰值反映突 触后膜电位发生去极化的程度,这些指标共同反映了 突触前神经递质释放的数量、动力学以及递质与突触 后受体的结合、分离过程。而本研究结果表明,双眼 FD 组与9 周龄组比较, EPSCs、NMDA-EPSCs 峰值、 NMDA-EPSCs 在总 EPSCs 中所占比例和 NMDA-EPSCs 复极化时间均无明显差异,提示双眼 FD 不影响成年 大鼠视皮层神经元总的兴奋性神经传递功能和 NMDA 受体介导的兴奋性神经传递功能。分析其原因:(1) 本研究采用的是双眼 FD 模型而前者采用黑暗饲养的 光觉剥夺模型,这两个模型对成年视皮层神经递质受 体的影响不完全相同,因此由受体介导的突触后电流 的变化也可能不一致。(2)本实验中所记录的 NMDA-EPSCs 包括所有 NMDA 受体亚型介导的电流,不是单 独的受体亚型介导的电流,其变化可能被掩盖;而前者

记录的则是总电流和抑制 NR2B 后的受体亚型电流, 结果可能更精确。(3)由于大鼠视皮层神经元 NMDA 受体介导的 NMDA-EPSCs 只在关键期高峰时占优势, 在可塑性关键期后期, AMPA 受体介导的电流在兴奋 性突触传递中占优势; GABA_A介导的抑制性突触传递 在整个突触后电流中占优势,因此双眼 FD 后的成年 视皮层,兴奋性神经递质的传递功能变化可能不易被 检测到。我们拟对双眼 FD 后成年视皮层 EPSCs 进行 亚型的分离,以便更加深入地研究其对成年视皮层可 塑性再激活的影响。

参考文献

- 1 Fagiolini M, Hensch TK. Inhibitory threshold for critical period activation in primary visual cortex [J]. Nature, 2000, 404: 183 - 186
- 2 Qin W, Yin ZQ, Wang SJ. Effects of binocular form deprivation on the excitatory postsynaptic currents mediated by N-methyl-D-aspartate receptors in rat visual cortex [J]. Clin Exp Ophthalmol, 2004, 3: 289-295
- 3 Gao PF, Yin ZQ, Liu YB, et al. Developmental changes of postsynaptic currents and long term potential in rat visual cortex during the critical period of plasticity[J]. Eye Sci,2005,21:38-43
- 4 Berardi N, Pizzorusso T, Maffei L. Critical periods during sensory development[J]. Curr Opin Neurobiol, 2000, 10(1): 138 - 145
- 5 Roberts EB, Meredith MA, Ramoa AS. Suppression of NMDA receptor function using antisense DNA block ocular dominance plasticity while preserving visual responses [J]. J Neurophysiol, 1998, 80 (3): 1021-1032
- 6 Daw NW, Gordon B, Fox KD, et al. Injection of MK-801 affects ocular dominance shifts more than visual activity [J]. J Neurophysiol, 1999, 81 (1):204-215
- 7 Laube B, Kuhse J, Betz H. Evidence for a tetrameric structure of recombinant NMDA receptors [J]. J Neurosci, 1998, 18(8): 2954 2961
- 8 Qiu S, Hua YL, Yang F, et al. Subunit assembly of N-methyl-daspartate receptors analyzed by fluorescence resonance energy transfer [J]. J Biol Chem, 2005, 280 (26): 24923 - 24930
- 9 Schorge S, Colquhoun D. Studies of NMDA receptor function and stoichiometry with truncated and tandem subunits [J]. J Neurosci, 2003, 23(4):1151-1158
- 10 Nase G, Weishaupt J, Stern P, et al. Genetic and epigenetic regulation of NMDA receptor expression in the rat visual cortex [J]. Eur J Neurosci, 1999,11(12):4320-4326
- 11 秦伟,阴正勤,王仕军,等.大鼠视皮层神经元 N-甲基-D-天冬氨酸受体电流的发育变化[J].第三军医大学学报,2003,25(10):854-857
- 12 Philpot BD, Sekhar AK, Shouval HZ, et al. Visual experience and deprivation bidirectionally modify the composition and function of NMDA receptors in visual cortex[J]. Neuron, 2001, 29(1):157-169
- 13 Yashiro K, Corlew R, Philpot BD. Visual deprivation modifies both presynaptic glutamate release and the composition of perisynaptic/ extrasynaptic NMDA receptors in adult visual cortex [J]. J Neurosci, 2005,25(50):11684-11692

(收稿:2008-12-01 修回:2009-02-19)

(本文编辑:王莉红)