|
3.2 Drusen的形成[19]
另一种AMD的病理成分是drusen,是沉积在RPE细胞和Bruch膜内胶原带之间的区域无定形沉积物。Drusen是AMD的特征。临床上,相对大小和形状不同分为硬性和软性的。虽然小的硬疣(<63μm)在临床上老年人群中95%可以发现,数个大的硬疣(≥125μm),尤其是黄斑区的软疣(≥12~250μm),尤其当有色素紊乱或色素脱失时,被认为是发生进展期AMD主要的危险因素。事实上,包括小的硬疣,drusen上面的光感受器发生了退行性变化。Drusen的形成是一个数年缓慢发生的复杂的多因素过程,drusen的形成对RPE和光感受器的影响包括物质的替代和通过免疫系统和局部炎症活化的间接影响。Drusen蛋白质和免疫组化的分析,分离出几种蛋白成分:包括数种免疫相关成分或分子,如树突状细胞突、免疫球蛋白、II型抗原、补体级联反应得成分,如激活剂、抑制剂、特异性活化补体片段;和终端途径成分,包括膜攻击复合物(MAC;C5b9),后者对外来病原体和局部宿主细胞和组织(如RPE,光感受器,和其他眼结构)都是致死性的[20]。补体系统是固有免疫系统的主要成分。局部炎症和补体级联反应的活化同时伴有MAC的产生,可以促进drusen的形成,RPE和光感受器变性,和Bruch膜破坏(与晚期的新生血管性AMD相关)[21]。近期基因研究证明在定位于1号染色体(1q31)CFH基因的氨基酸402(Y402H)发生酪氨酸和组氨酸的突变会增加AMD的发病危险。因为CFH可以阻断无法控制的补体激活和炎症过程,这种突变会促进炎症和加重其结果[22,23]。
4脉络膜新生血管
成人的视网膜是一个高代谢和高耗氧的神经组织。视网膜和脉络膜血管同时供应视网膜。视网膜的血管供应到外丛状层以内,供应视网膜内2/3层的氧气和营养,外1/3层无血管,但是它通过脉络膜血管接受营养和氧气。在正常情况下,由于促新生血管生长因子和抗新生血管生长因子之间保持平衡,这些细胞相对静止,血管内皮细胞对新生血管的刺激是有抵抗的,因此视网膜血管很少发生内皮细胞增生。低氧或缺血会导致VEGF、整合素和蛋白酶上调,这些因子的平衡被打破[24,25]。VEGF的信号强于PEDF时,会导致促新生血管生长因子增强,刺激新生血管生长,包括脉络膜新生血管(choroidal neovasculartization,CNV)[26]。实际上,中性粒细胞、巨噬细胞、肥大细胞、活化的小胶质细胞都可以产生和释放VEGF等因子,现在认为是局部炎症和免疫反应引起促新生血管因子增加导致了CNV的发生[27,28]。 总之,近年来很多研究应用免疫组化和分子生物学方法研究AMD的发病,结果表明炎性过程的局部活化,导致活化的补体成分、急性期反应物、免疫调节物和其它炎性因子的聚集参与了AMD发生的过程。现在的药物多针对VEGF以对抗新生血管[29],未来会出现更多对抗细胞内和细胞外这些细胞毒性沉积物以阻断炎症过程的药物,从而从发病早期阻止疾病进一步发展。
【参考文献】
1 Tuo J, Bojanowski CM, Chan CC. Genetic factors of agerelated macular degeneration. Progr Retin Eye Res 2004;23(2):229249
2 Traboulsi EI. The challenges and surprises of studying the genetics of agerelated macular degeneration. Am J Ophthalmol 2005;139(5):908911
3 Seddon JM, Ajani UA, Mitchell BD. Familial aggregation of agerelated maculopathy. Am J Ophthalmol 1997;123(2):199206
4 Bok D. Evidence for an inflammatory process in agerelated macular degeneration gains new support. Proc Natl Acad Sci USA 2005;102(20):70537054
5 Kuehn BM. Gene discovery provides clues to cause of agerelated macular degeneration. JAMA 2005;293(15):18411845
6 Beatty S, Koh H, Phil M, et al. The role of oxidative stress in the pathogenesis of agerelated macular degeneration. Surv Ophthalmol 2000;45(2):115134
7 AgeRelated Eye Disease Study Research Group. A randomized, placebocontrolled, clinical trial of highdose supplementation with vitamins C and E, beta carotene, and zinc for agerelated macular degeneration and vision loss: AREDS report no. 8. Arch Ophthalmol 2001;119(10):14171436
8 Evans JR, Fletcher AE, Wormald RP. 28,000 Cases of agerelated macular degeneration causing visual loss in people aged 75 years and above in the United Kingdom may be attributable to smoking. Br JOphthalmol 2005;89(5):550553
9 Thornton J, Edwards R, Mitchell P, et al. Smoking and agerelated macular degeneration:a review of association. Eye 2005;19:935944
10 Mitchell P, Smith W, Wang JJ. Iris color, skin sun sensitivity, and agerelated maculopathy: the Blue Mountains Eye Study. Ophthalmology 1998;105(8):13591363
11 Margrain TH, Boulton M, Marshall J, et al. Do blue light filters confer protection against agerelated macular degeneration? Prog Retin Eye Res 2004;23(5):523531
12 Reme CE. The dark side of light: rhodopsin and the silent death of vision: the Proctor Lecture. Invest Ophthalmol Vis Sci 2005;46(8):26712682
13 Grimm C, Wenzel A, Hafezi F, et al. Protection of Rpe65deficient mice identifies rhodopsin as a mediator of lightinduced retinal degeneration. Nat Genet 2000;25(1):6366
14 Algvere PV, Marshall J, Seregard S.Agerelated maculopathy and the impact of blue light hazard. Acta Ophthalmol Scand 2006;84(1):415
15 Kim SR, Fishkin N, Kong J, et al. Rpe65 Leu450Met variant is associated with reduced levels of the retinal pigment epithelium lipofuscin fluorophores A2E and isoA2E. Proc Natl Acad Sci USA 2004;101(32):1166811672
16 Davies NP, Morland AB. Macular pigments: their characteristics and putative role. Prog Retin Eye Res 2004;23(5):533559
17 Sparrow JR, Boulton M: RPE lipofuscin and its role in retinal pathobiology. Exp Eye Res 2005;80(5):595606
18 Warburton S, Southwick K, Hardman RM, et al. Examining the proteins of functional retinal lipofuscin using analysis as a guide for understanding its origin. Mol Vis 2005;11:11221134
19 Jiang W, Chiou GCY. The development of agerelated macular degeneration(AMD)experiment models. Int J Ophthalmol(Guoji Yanke Zazhi) 2007;7(3):585589
20 Crabb JW,Miyagi M,Gu X, et al. Drusen proteome analysis: an approach to the etiology of agerelated macular degeneration. Proc Natl Acad Sci USA 2002;99(23):1468214687
21 Kijlstra A, La Heij EC, Hendrikse F. Immunological factors in the pathogenesis and treatment of agerelated macular degeneration. Ocul Immunol Inflam 2005;13:311
22 Kuehn BM. Gene discovery provides clues to cause of agerelated macular degeneration. JAMA 2005;293:18411845
23 Zipfel PF, Heinen S, Jozsi M, et al. Complement and diseases: defective alternative pathway control results in kidney and eye diseases. Mol Immunol 2006;43(12):97106
24 Campochiaro PA. Ocular neovascularization and excessive vascular permeability. Expert Opin Biol Ther 2004;4(9):13951402
25 Zhou HW, Wu Q. Vascular endothelial growth factor and its receptors in choroid and retinal neovasculartization. Int J Ophthalmol(Guoji Yanke Zazhi) 2007;7(3):791795
26 Das A, McGuire PG. Retinal and choroidal angiogenesis: pathophysiology and strategies for inhibition. Prog Retin Eye Res 2003;22(6):721748
27 Ng EW, Adamis AP. Targeting angiogenesis, the underlying disorder in neovascular agerelated macular degeneration. Can J Ophthalmol 2005;40(3):352368
28 Sun Y, Yan ZG, Gao H. Pathologic neovascularization and agerelated macular degeneration. Int J Ophthalmol(Guoji Yanke Zazhi) 2007;7(4):11011103
29 Zhang X, Ren BC. Recent advance of the study on treatment for agerelated macular degeneration. Int J Ophthalmol(Guoji Yanke Zazhi) 2007;7(6):16741676 上一页 [1] [2] |